Detection and molecular characterization of *Hepatozoon canis*, *Babesia vogeli*, *Ehrlichia canis*, and *Anaplasma platys* in dogs from Metro Manila, Philippines

Davin Edric V. Adao¹,², Charles Michael T. Herrera¹, Luiza H. Galarion¹,², Nicole R. Bolo¹,², Rhodora S. Carlos³, Enrique T. Carlos⁴, Sixto S. Carlos⁴, Windell L. Rivera¹,²,∗

¹Institute of Biology, College of Science, and ²Molecular Protozoology Laboratory, Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101, Philippines
³Carlos Veterinary Clinic, Parañaque City 1700, Philippines
⁴Makati Dog and Cat Hospital, Makati City 1210, Philippines

(Received: January 19, 2017; Revised: March 24, 2017; Accepted: April 21, 2017)

Abstract: The study of canine vector-borne diseases in the Philippines started in the 1970s but only gained interest in the past decade. Characterization of such diseases in the Philippines remains incomplete, thus, it is necessary to obtain additional information on the prevalence and diversity of canine tick-borne diseases in the country. In this study, blood samples were obtained at two veterinary clinics in Metro Manila, Philippines from 114 dogs suspected of having canine tick-borne pathogens. Polymerase chain reaction (PCR) was performed on whole blood DNA extracts followed by sequencing, and the following pathogens were detected: *Hepatozoon* (*H.* canis) (5.26%), *Babesia* (*B.* vogeli) (5.26%), *Ehrlichia* (*E.* canis) (4.39%), and *Anaplasma platys* (3.51%). Additionally, a set of multiplex PCR primers were developed to detect *H. canis*, *Babesia* spp. (*B. canis* and *B. vogeli*), and *E. canis* in canine blood. Multiplex and conventional single-reaction PCR results for the 114 dog blood samples were similar, except for one *H. canis* sample. Multiplex PCR is, therefore, a useful tool in screening infected dogs in veterinary clinics. This study’s results, together with those of previous studies in the country, show that canine vector-borne pathogens are an emerging veterinary concern in the Philippines.

Keywords: Philippines, canine vector-borne diseases, dogs, molecular detection, multiplex polymerase chain reaction

Introduction

Canine vector-borne diseases (CVBDs) caused by the protozoan parasites *Hepatozoon* spp. and *Babesia* spp. as well as members of the prokaryotic group *Anaplasmataceae* (e.g., *Ehrlichia* spp. and *Anaplasma* spp.) have been the subject of studies over the years due to their impact to both companion and working dogs [25]. Once canine vector-borne (CVB) infections manifest in canine blood cells, subclinical (e.g., lethargy, depression) to potentially fatal (e.g., multiple organ failure) symptoms can occur. The causative agents of CVBDs are transferred via tick vectors, hence, the travel and settlement of domestic dogs to areas where these vectors and pathogens are endemic (e.g., near wilderness areas) have contributed to their spread [25, 29]. In the Philippines, there were already reports of CVBDs in humans and dogs in the 1970s. The presence of *Hepatozoon* sp. in a human patient [7] and in canines [24] as well as *Babesia* sp. in canines [6] has been reported. However, follow-up studies were only available decades later with the advent of molecular methods leaving a large gap on surveillance of CVB infections for roughly three decades. These recent studies used polymerase chain reaction (PCR) detection to identify *Hepatozoon* (*H.* canis, *Anaplasma* (*A.* platys), *Ehrlichia* (*E.* canis), and *Babesia* spp.) in dogs [2, 8, 36, 37, 39] and in brown ticks (*Rhipicephalus* [R.] sanguineus) isolated from dogs [38]. While it is difficult to determine whether CVBDs were already endemic to the Philippines or brought by infected ticks or dogs from other countries, these studies proved that they are indeed present in domestic dogs and ticks, and that there is a need for additional prevalence data on CVBDs in the country.

This study aimed to survey the presence of *Babesia* spp., *Hepatozoon* spp., and *Anaplasmataceae* infecting domestic dogs in Metro Manila, Philippines and develop a multiplex PCR protocol that can be used to detect the presence of *H.* canis, *Babesia* spp. (*B. canis* and *B. vogeli*), and *E. canis* in dogs. The current conventional method of detection of CVBDs is blood smear examination (with Giemsa staining) together with observation of clinical signs [1, 15]. However, this method poses several disadvantages. First, microscopy...
is both labor-intensive and time-consuming. It also requires trained microscopists since infected cells can be confused with other blood cells such as platelets and white blood cells with phagocytosed materials [23]. Second, several clinical signs – such as fever, anorexia, depression, thrombocytopenia, and anemia – are common to CVB infections, and may vary among hosts [32]. Finally, concurrent infections – which are not easily detected in microscopy – are known to occur as some of these pathogens have the same tick vector (e.g. *E. canis, H. canis*, and *B. vogeli* are all carried by *R. sanguineus*) [29]. If these difficulties are ignored, misdiagnosis of the disease can occur. Thus, multiplex PCR is an affordable, accurate, and rapid method of detection that can be used for proper detection of CVBDS. Ultimately, investigation of prevalence and efficient screening of the pathogens are important first steps in controlling the spread of CVBDS, most especially in the Philippines where inter-island transmission can lead to infection of local populations lacking immunity against CVBDS.

Materials and Methods

Sample collection

The research protocol used in this study was reviewed and approved by the Institutional Animal Care and Use Committee of the University of the Philippines Los Baños under assigned protocol no. 2012-35. A total of 114 canine blood samples were obtained from the Makati Dog and Cat Hospital in Makati City, Philippines and the Carlos Veterinary Clinic in Parañaque City, Philippines from 2013-2014. All of these dogs were suspected to have CVBDS due to presence of signs of infection such as high fever (> 39°C), low platelet count (< 200,000 platelets/mm³), low white blood cell count (< 6,000 white blood cells/mm³), presence of clinical signs (e.g., lethargy), presence of ticks, and positive serology results for *Ehrlichia* sp. DNA was extracted using DNAzol BD reagent (Life Technologies; USA) following the manufacturer’s protocol, and extracts were stored at −4°C until PCR amplification.

Molecular detection of *H. canis, Babesia* spp., and Anaplasmataceae

Conventional PCR and DNA sequencing using primers that are specific for target CVB pathogens were done. *H. canis* infections were identified by amplification and sequencing of 660 bp PCR products using Hep-F/Hep-R [13]. *Babesia* spp. (B. canis, B. vogeli, and B. rossi) infections were identified by amplification and sequencing of PCR products using the primers PIRO-A1/PIRO-B, which produce a 450 bp PCR product [9]. Anaplasmataceae were detected and identified by amplification and sequencing of the 345 bp products of the primers EHR16SD/EHR16SR [12, 26]. Further identification of *Anaplasma* sp. was conducted by sequencing larger parts of the 16S rRNA gene using the primer pairs fD1/EHR16SR and EHR16SD/Rp2 [12]. PCR amplification was performed using previously published protocols for Hep-F/Hep-R [16], PIRO-A1/PIRO-B [5], and EHR16SD/EHR16SR [34]. Full 16S rRNA gene amplification of *Anaplasma* spp. was performed according to the protocol of Inokuma et al. [12]. The primers Hep-F/Hep-R and PIRO-A1/PIRO-B target the 18S rRNA genes of their respective CVB pathogens while primers EHR16SD, EHR16SR, fD1, and Rp2 amplify the 16S rRNA gene of Anaplasmataceae. PCR was performed thrice on positive samples and sent to the Philippine Genome Center for sequencing to rule out false positives. Sequences were aligned using the Clustal W feature of BioEdit 7.2.0 [11]. Sequences were then uploaded onto the nucleotide BLAST website (National Center for Biotechnology Information, USA) to determine the most similar sequences and confirm their species identity.

Phylogenetic analysis

Phylogenetic trees were constructed to confirm species identification of the samples. Neighbor joining (NJ) and maximum parsimony (MP) phylogenetic trees were constructed using either PAUP* 4.01b [31] or MEGA 6 software [33]. Maximum likelihood (ML) trees were constructed by uploading the aligned sequences to the PHYML website [10].

The phylogenetic tree of partial *H. canis* 18S rRNA gene was constructed with sequences from *H. canis* (GenBank accession nos. EU289222 and KJ634654; National Center for Biotechnology Information), *H. americanum* (GenBank accession no. AF176836), *B. canis* (GenBank accession nos. AF176837 and AF130361), *H. felis* (GenBank accession nos. KM435071, KC138533, and KC138534), and *Sarcocystis arctosi* (GenBank accession no. EF564590) as outgroup. The phylogenetic tree of *Babesia* sp. partial 18S rRNA gene was constructed with sequences from *B. canis* (GenBank accession nos. AY072926, AY270247, AY527063, AY649326, AY962186, AY962187, HQ662634, KC593877-KC593879, KF499115, KM111282, and KM111283), B. rossi (GenBank accession nos. AB303071-AB303075, AB933163-AB933166, DQ111760, JQ613104, JQ613105, and L19079), B. vogeli (GenBank accession nos. AB303076, AY072925, AY07771, DQ297390, HM590440, HQ148663, HQ148664, HQ662635, JN171320-JN713122, JX304677, JX304679-JX304683, JX112785, JX871891, KF970926, and KF970929), and Babesia sp. ‘Spanish dog’ (GenBank accession no. EU583387) with Babesia sp. ‘Oklahoma dog’ (GenBank accession no. AF20563) and B. gibsoni (GenBank accession no. KJ142323) as outgroups. The phylogenetic tree of *Anaplasma* sp. 16S rRNA gene was constructed with the sequences of *A. bovis* (GenBank accession nos. AB196475 and AB211163), A. centrale (GenBank accession nos. AB211164 and AF309869), A. marginale (GenBank accession nos. AF309867, AF309868, KU686788-KU686793, and NR074556), A. odocoilei (GenBank accession no. JX876644), A. ovis (GenBank accession no. AY262124), A. phagocytophilum (GenBank accession nos. AB196720, AB196721, DQ458805, and DQ458808), A. platys (GenBank accession nos. AF536828 and EU439943), *Anaplasma* sp.
(GenBank accession nos. KR261620-KR261622), and uncul-
tured Anaplasma sp. (GenBank accession nos. JN862824 and
JX402624) with E. canis (GenBank accession no. U26740)
as an outgroup.

Multiplex primer set design

Several gene sequences of *E. canis*, *B. canis*, *B. vogeli*, *B.
rossi*, and *H. canis* were obtained from the GenBank Nucle-
otide Database for multiplex primer design. These primers
were designed from *E. canis* 16S rRNA gene sequences
(GenBank accession nos. AB723707, AB723708, AB723709,
AB723710, AB723711, AB723712, JX261981, and JX893522),
B. canis, *B. rossi*, and *B. vogeli* 18S rRNA gene sequences
(GenBank accession nos. *B. canis canis* EU622792, *B. canis*
canis AY072926, *B. canis* JF461263, *B. canis rossi* JQ613104,
B. canis rossi JQ613105, *B. canis canis* JX227980, *B. canis*
JX678979, *B. canis vogeli* JX871889, and *B. canis vogeli*
JX871891), and *H. canis* 18S rRNA gene sequences (GenBank
accession nos. AF176835, AY461378, JX441117, JX466885,
KC138531, and KC138540). Sets of sequences for each
organism were aligned using the Clustal W feature of Bio-
Edit 7.2.0 to determine regions specific for each of the target
species. Gene sequences that had these conserved regions for
each species were imported to PrimerPlex 2.6.2 (PREMIER
Biosoft, USA). Multiplex primer sets specific for the gene
sequences of each species were designed from *E. canis* 16S rRNA
gene sequences (GenBank accession nos. AB723707, AB723708,
AB723709, AB723710, AB723711, AB723712, JX261981, and JX893522),
B. canis, *B. rossi*, and *B. vogeli* 18S rRNA gene sequences
(GenBank accession nos. *B. canis canis* EU622792, *B. canis*
canis AY072926, *B. canis* JF461263, *B. canis rossi* JQ613104,
B. canis rossi JQ613105, *B. canis canis* JX227980, *B. canis*
JX678979, *B. canis vogeli* JX871889, and *B. canis vogeli*
JX871891), and *H. canis* 18S rRNA gene sequences (GenBank
accession nos. AF176835, AY461378, JX441117, JX466885,
KC138531, and KC138540). Sets of sequences for each
organism were aligned using the Clustal W feature of Bio-
Edit 7.2.0 to determine regions specific for each of the target
species. Gene sequences that had these conserved regions for
each species were imported to PrimerPlex 2.6.2 (PREMIER
Biosoft, USA). Multiplex primer sets specific for the gene
sequences were then designed with primer pairs having melting
temperatures within 55 to 65°C. The designed primers
targeted conserved regions of *E. canis* 16S rRNA gene
(*Ehr16S_multiF* and *Ehr16S_multiR*), *H. canis* 18S rRNA
gene (*Hep18S_multiF* and *Hep18S_multiR*), and *Babesia*
spp. (*B. canis* and *B. vogeli*) 18S rRNA gene (*Bab18S_multiF*
and *Bab18S_multiR*) (Table 1). Amplicon sizes were restricted
to 200 to 700 bp in size at 100 to 150 bp intervals. Default
software specifications to avoid formation of secondary
structures such as hairpin loops and primer dimers were used.
Primer sequences were tested for specificity using both nucle-
totide BLAST (blastn) and primer BLAST features available at
the National Center for Biotechnology Information (NCBI)
website. The optimal multiplex primer set was then picked
based on similarities in melting temperature, low tendency of
secondary structure formation, and high specificity for target
gene sequence.

**Optimum annealing temperature and analytical sen-
titivity and specificity**

Multiplex PCR was initially performed on positive control
DNA extracts of *E. canis*, *B. canis*, and *H. canis* to obtain
the optimum annealing conditions as well as analytical specific-
ity and sensitivity of the designed primers. DNA extracts of
positive controls were requested from the following universi-
ties: *E. canis* from the Koret School of Veterinary Medicine
of the Hebrew University of Jerusalem (Israel), *B. canis* from
the Department of Parasitology and Zoology of the Szent Ist-
van University (Godollo, Hungary), and *H. canis* from the
Dipartimento di Medicina Veterinaria of the Universita degli
Studi di Bari Aldo Moro (Bari, Italy). *A. platys* and *B. vogeli*
DNA extracts were obtained during sampling of canine blood
in this study. All multiplex PCR experiments were performed
with KAPA2G Fast multiplex kit according to the
manufacturer’s protocol with 0.25 μM of each multiplex
primer. The optimum annealing temperature was obtained
using gradient PCR (58, 59, 60, 61, and 62°C in each) on
DNA extracts of *E. canis*, *B. canis*, and *H. canis*. Single reac-
tion PCR was performed on DNA extracts of *E. canis*, *B.
canis*, *H. canis* and *B. vogeli* mixture, and *A. platys* to
determine possible cross-reactions of primers with other
canine blood-borne pathogens. Multiplex PCR was also per-
duced on DNA extracts of *Escherichia coli*, *Pseudomonas
aeruginosa*, *Bacillus subtilis*, and *Staphylococcus aureus*
to determine if the primers would cross-react to any of these
four common bacteria that may contaminate blood samples
during blood or DNA extraction [3, 28]. Analytical sensitiv-
ty was determined by performing multiplex PCR on 1:10,
1:100, and 1:1,000 dilutions of available *E. canis* (24.4 ng/
μL), *B. canis* (19.1 ng/μL), and *H. canis* (45 ng/μL) DNA.
Single or multiplex PCR mixes containing only the respec-
tive primers and no DNA template served as negative con-
trols for all reactions.

Results

Symptoms of CVBD in dogs sampled

Of the 114 dogs sampled, 72 (63.16%) presented only one
sign of infection, 37 (32.46%) presented a combination of
two signs of infection, while the five remaining dogs
presented three signs of infection (4.39%). The most com-

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5' to 3')</th>
<th>T_m (°C)</th>
<th>Target</th>
<th>Product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehr16S_multiF</td>
<td>5'–GCCTAACACATGCAATGCGACCGACAATT–3'</td>
<td>65.3</td>
<td>Ehrlichia canis</td>
<td>664 bp</td>
</tr>
<tr>
<td>Ehr16S_multiR</td>
<td>5'–AACCGAGATAGCGCCCTTCGCCACT–3'</td>
<td>64.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bab18S_multiF</td>
<td>5'–ACCCAAAACCTCACCAGTAGCAATT–3'</td>
<td>63</td>
<td>Babesia spp.</td>
<td>491 bp</td>
</tr>
<tr>
<td>Bab18S_multiR</td>
<td>5'–GACGCACCTCACTAATGCGCCATAG–3'</td>
<td>63.4</td>
<td>(B. canis and B. vogeli)</td>
<td></td>
</tr>
<tr>
<td>Hep18S_multiF</td>
<td>5'–AACGACTCCTCAGACCTTAGGAA–3'</td>
<td>62.7</td>
<td>Hepatozoon canis</td>
<td>376 bp</td>
</tr>
<tr>
<td>Hep18S_multiR</td>
<td>5'–TCACAGACCTGTTATTGCCTCACAATT–3'</td>
<td>63.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mon signs of infection observed were presence of anti-Ehrlichia IgG antibodies in serum (71.05%), low platelet count (47.37%), and presence of ticks (14.91%). The following signs of infection were found in less than 5% of the dogs:

Table 2. Prevalence of Hepatozoon canis, Babesia vogeli, Ehrlichia canis, and Anaplasma platys infections and the type and number of symptoms found in hosts

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Hepatozoon canis</th>
<th>Babesia vogeli</th>
<th>Ehrlichia canis</th>
<th>Anaplasma platys</th>
</tr>
</thead>
<tbody>
<tr>
<td>High fever (> 39°C)</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/4</td>
</tr>
<tr>
<td>Low platelet count (< 200,000 platelets/mm³)</td>
<td>1/6</td>
<td>4/6</td>
<td>4/6</td>
<td>4/4</td>
</tr>
<tr>
<td>Low white blood cell count (< 6,000 WBC/mm³)</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/4</td>
</tr>
<tr>
<td>Presence of clinical signs (e.g., lethargy)</td>
<td>0/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/4</td>
</tr>
<tr>
<td>Presence of ticks</td>
<td>2/6</td>
<td>0/6</td>
<td>0/6</td>
<td>0/4</td>
</tr>
<tr>
<td>Positive serology results for Ehrlichia sp.</td>
<td>4/6</td>
<td>6/6</td>
<td>6/6</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Number of symptoms

- 1 symptom: 5/6, 2/6, 2/6, 3/4
- 2 symptoms: 1/6, 4/6, 4/6, 1/4
- 3 symptoms: 0/6, 0/6, 0/6, 0/4

Table 3. DNA sequences of amplicons deposited in GenBank for primers Hep-F/Hep-R (Hepatozoon canis), PIRO-A1/PIRO-B (Babesia vogeli), EHR16SD/EHR16SR (Anaplasmataceae), and fD1/EHR16SR and EHR16SD/Rp2 (Anaplasma platys)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Percent identification</th>
<th>Percent coverage</th>
<th>GenBank accession number of most similar sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEEH_HepF</td>
<td>99</td>
<td>99</td>
<td>Hepatozoon canis clone 7243 (KC138535)</td>
</tr>
<tr>
<td>JJ_HepF</td>
<td>99</td>
<td>100</td>
<td>Hepatozoon canis clone 7243 (KC138535)</td>
</tr>
<tr>
<td>LLL_HepF</td>
<td>100</td>
<td>100</td>
<td>Hepatozoon canis clone 7243 (KC138535)</td>
</tr>
<tr>
<td>M_HepF</td>
<td>99</td>
<td>100</td>
<td>Hepatozoon canis clone 7243 (KC138535)</td>
</tr>
<tr>
<td>UUUU_HepF</td>
<td>99</td>
<td>100</td>
<td>Hepatozoon canis clone 7243 (KC138535)</td>
</tr>
<tr>
<td>VVVV_HepF</td>
<td>99</td>
<td>100</td>
<td>Hepatozoon canis clone 7243 (KC138535)</td>
</tr>
<tr>
<td>C_PIRO</td>
<td>100</td>
<td>100</td>
<td>Babesia canis vogeli SK-011 (JX112785)</td>
</tr>
<tr>
<td>EEEE_PIRO</td>
<td>100</td>
<td>99</td>
<td>Babesia canis vogeli SK-011 (JX112785)</td>
</tr>
<tr>
<td>FFFF_PIRO</td>
<td>99</td>
<td>99</td>
<td>Babesia canis vogeli SK-011 (JX112785)</td>
</tr>
<tr>
<td>GGGG_PIRO</td>
<td>100</td>
<td>100</td>
<td>Babesia canis vogeli SK-011 (JX112785)</td>
</tr>
<tr>
<td>JII_PIRO</td>
<td>100</td>
<td>100</td>
<td>Babesia canis vogeli SK-011 (JX112785)</td>
</tr>
<tr>
<td>SSS_PIRO</td>
<td>99</td>
<td>98</td>
<td>Babesia canis vogeli SK-011 (JX112785)</td>
</tr>
<tr>
<td>EEE_Ecanis</td>
<td>99</td>
<td>99</td>
<td>Ehrlichia canis isolate TrKysEcan3 (KJ513197)</td>
</tr>
<tr>
<td>HHHH_Ecanis</td>
<td>99</td>
<td>99</td>
<td>Ehrlichia canis isolate TrKysEcan3 (KJ513197)</td>
</tr>
<tr>
<td>LLL_Ecanis</td>
<td>99</td>
<td>100</td>
<td>Ehrlichia canis isolate TrKysEcan3 (KJ513197)</td>
</tr>
<tr>
<td>T_Ecanis</td>
<td>97</td>
<td>97</td>
<td>Ehrlichia canis isolate S3b (KJ659037)</td>
</tr>
<tr>
<td>UU_Ecanis</td>
<td>99</td>
<td>99</td>
<td>Ehrlichia canis isolate TrKysEcan3 (KJ513197)</td>
</tr>
<tr>
<td>YY_Ecanis</td>
<td>99</td>
<td>99</td>
<td>Ehrlichia canis isolate TrKysEcan3 (KJ513197)</td>
</tr>
<tr>
<td>HHHH_Anaplasma</td>
<td>99</td>
<td>99</td>
<td>Uncultured Anaplasma sp. (FJ934580)</td>
</tr>
<tr>
<td>IIII_Anaplasma</td>
<td>99</td>
<td>99</td>
<td>Uncultured Anaplasma sp. (FJ934580)</td>
</tr>
<tr>
<td>QQQ_Anaplasma</td>
<td>99</td>
<td>99</td>
<td>Uncultured Anaplasma sp. (FJ934580)</td>
</tr>
<tr>
<td>RRR_Aphagocytophilum</td>
<td>99</td>
<td>97</td>
<td>Anaplasma phagocytophilum (HG916767)</td>
</tr>
<tr>
<td>Isolate_RRR</td>
<td>99</td>
<td>97</td>
<td>Anaplasma platys (AY530806)</td>
</tr>
<tr>
<td>Isolate_HHHHH</td>
<td>100</td>
<td>99</td>
<td>Anaplasma platys Gigio (EU439943)</td>
</tr>
<tr>
<td>Isolate_III</td>
<td>99</td>
<td>99</td>
<td>Anaplasma platys isolate A.pl.#87 (JQ396431)</td>
</tr>
<tr>
<td>Isolate_QQQ</td>
<td>100</td>
<td>99</td>
<td>Anaplasma platys isolate A.pl.#87 (JQ396431)</td>
</tr>
</tbody>
</table>
Detection and molecular characterization of CVB pathogens in the Philippines

presence of clinical signs (3.51%), high fever (2.63%), and low white blood cell count (1.75%).

PCR detection and DNA sequencing

PCR and sequencing detected *E. canis* in 5.26% (6/114), *B. vogeli* in 5.26% (6/114), *H. canis* in 5.26% (6/114), and *A. platys* in 3.51% (4/114) out of 114 dogs. All dogs positive for CVBDs exhibited either one or two symptoms (Table 2) whereas all dogs positive for any of the four have either or both low platelet counts and presence of anti-*Ehrlichia* sp. IgG. Besides, none of the dogs that showed positive infection in PCR and multiplex PCR manifested clinical signs of the disease, high fever, or low white blood cell counts. Lastly, two dogs infected with *H. canis* have ticks found in their fur. All sequences were 97-100% similar to their respective species identity (Table 3). Whilst *H. canis*, *B. vogeli*, and *E. canis* sequences were 99–100% similar to their respective identified species. For the *Anaplasma* sp., the use of EHR16SD/EHR16SR set of primers exhibited that three of the four samples were 99% similar to uncultured *Anaplasma* sp. while the remaining was 97% similar to *A. phagocytophilum*. Subsequent PCR using ID1/EHR6R and EHR16SD/Rp2 sets of primers to amplify larger parts of the 16S rRNA gene, and sequence analysis of products confirmed that the isolates were 97–99% similar to *A. platys*.

Phylogenetic trees were constructed to confirm species identity of *H. canis*, *B. vogeli*, and *A. platys*. Samples clustered with their respective species identity with high bootstrap support from the ML, NJ, and MP phylogenetic trees further confirmed the identity of the samples as *H. canis* (Fig. 1), *B. vogeli* (Fig. 2), and *A. platys* (Fig. 3). The sequences obtained in this study were stored in GenBank with accession nos. KP182929-KP182934 for partial 18S rRNA gene sequences of *H. canis*, KP182935-KP182940 for partial 18S rRNA gene sequences of *B. vogeli*, KP182941-KP182950 for partial 16S rRNA gene sequences of all Anaplasmataceae, and KX447502-KX447505 for full 16S rRNA gene sequences of *A. platys*.

Multiplex PCR

The multiplex PCR primers were able to amplify their respective targets at all temperatures used in the gradient PCR experiment with lower limits of detection of 4.5 ng/µL, 19.1 ng/µL, and 2.4 ng/µL for *H. canis*, *B. canis*, and *E. canis* DNA, respectively (data not shown). To standardize, an annealing temperature of 60°C was used for all experiments. The three primer sets amplified their intended target CVB pathogen in both single reaction and multiplex PCR without cross-reacting with any of the other bacterial and CVB pathogen DNA used in the analytical specificity study (Fig. 4). Multiplex PCR detected 4.39% (5/114) *H. canis* infections, 5.26% (6/114) *B. vogeli* infections, and 5.26% (6/114) *E. canis* infections from the 114 dogs. All samples positive for single reaction PCR and sequencing were also positive for multiplex PCR except for one *H. canis* infection. Moreover, multiplex PCR also detected one case of *E. canis* and *H. canis* co-infection and two cases of *B. vogeli* and *H. canis* co-infections.

![Fig. 1. Consensus phylogenetic tree based on the maximum likelihood (ML) tree using partial 18S rRNA gene sequences (517 unambiguously aligned nucleotide positions) of 15 Hepatozoon specimens and 1 outgroup species (Sarcocystis arctosi). The bootstrap consensus tree was constructed using the HKY model and inferred from 1,000 replicates. The bootstrap values of the three phylogenetic methods used are shown in the order ML/neighbor joining (NJ) and maximum parsimony (MP). The interior branches are marked with – if the bootstrap value is less than 50%.](image-url)
Discussion

H. canis, *B. vogeli*, *E. canis*, and *A. platys* infections in dogs in Metro Manila, Philippines are present in low prevalence. In this study, *H. canis*, *B. vogeli*, *E. canis* and *A. platys* were found in 5.26%, 5.26%, 5.26%, and 3.51%, respectively, of 114 dogs admitted at the Makati Dog and Cat Hospital and the Carlos Veterinary Clinic. Phylogenetic analyses and BLAST results confirm the identification of these with high bootstrap support. Notably, the detected *Anaplasma* infections were identified as *A. platys* after full 16S rRNA gene sequencing and phylogenetic analyses. Results show that CVB pathogens in dogs from Metro Manila are more diverse than previously reported. In fact, a previous study...
Fig. 3. Consensus phylogenetic tree based on the maximum likelihood (ML) tree using full 16S rRNA gene sequences (819 unambiguously aligned nucleotide positions) of 30 *Anaplasma* specimens and 1 outgroup species (*Ehrlichia canis*). The bootstrap consensus tree was constructed using the TrN model and inferred from 1,000 replicates. The bootstrap values of the three phylogenetic methods used are shown in the order ML/neighbor joining (NJ) and maximum parsimony (MP). The interior branches are marked with – if the bootstrap value is less than 50%.

Fig. 4. Results of single reaction and multiplex polymerase chain reaction (PCR) in 1.5% agarose gel on positive and negative control DNA using the designed multiplex PCR primers. Positive bands are indicated by 376 bp (*Hepatozoon [H.] canis*), 491 bp (*Babesia* sp.), and 664 bp (*Ehrlichia [E.] canis*). (A) Single reaction PCR. L, molecular weight ladder; S1, negative control; S2, *E. canis* with Ehr16S_multi primer pair; S3, *Babesia* (B.) *canis* with Bab18S_multi primer pair; S4, *H. canis* with Hep18S_multi primer pair. (B) Multiplex PCR. M1, positive control DNA of *E. canis*, *B. canis*, and *H. canis*; M2, mixed DNA sample of *E. canis* and *H. canis*; M3, mixed DNA sample of *B. vogeli* and *H. canis*; M4, DNA sample of *B. canis*; M5, DNA sample of *B. vogeli*; M6, DNA sample of *H. canis*; M7, negative control; L, molecular weight ladder. Single reaction PCR using primers (C) Hep18S_multi primer pair, (D) Bab18S_multi primer pair, and (E) Ehr16S_multi primer pair: S1, negative control; S2, *B. canis*; S3a, *H. canis*; S3b, *B. vogeli*; S4, *B. vogeli* and *H. canis*; S5, *A. platys*; S6, *E. canis*; L, molecular weight ladder. (F) Multiplex PCR: M1, negative control; M2, *Bacillus subtilis*; M3, *Staphylococcus aureus*; M4, *Pseudomonas aeruginosa*; M5, *Escherichia coli*; L, molecular weight ladder.
only detected one case of canine *H. canis* infection out of 168 blood samples from dogs around Metro Manila using the primers Babesia-F/Babesia-R and blood smear examination [2].

PCR detection has been instrumental in detection of CVB pathogens in the country including published accounts of canine infections of *E. canis* [36], *A. platys* [37], and *B. vogeli* [39] in Cebu City and *Babesia* sp. and *E. canis* in the province of Nueva Ecija [8]. In addition, dogs seropositive for *B. gibsoni* infections have also been reported in the province of Cavite [12]. More surveys in stray and pet dogs can clarify the prevalence and diversity of CVB pathogens in the country as well as the inherent risks. In neighboring Southeast Asian countries, more than 10% of sampled population of dogs can be infected with CVB pathogens. For example, a survey of CVBDs out of 101 free-roaming dogs in Cambodia reported prevalences of up to 32.7% for *Babesia* spp., 10.9% for *H. canis*, and 21.8% for *E. canis* [14]. Similarly, *E. canis* prevalence can be as high as 25.5% of stray dogs in Malaysia [19] and 20.4% of pet dogs [30] and 21.5% of stray dogs [27] in Thailand. Moreover, surveys of CVBDs in the Philippines are limited to detection of *Hepatozoon* spp., *Babesia* spp., *Anaplasma* spp., and *Ehrlichia* spp. Recent studies have already shown presence of *Dirofilaria immitis* and *Mycoplasma* spp. in dogs from Cambodia [14] and *Mycoplasma* spp. in dogs from Thailand [20].

Multiplex PCR combines the sensitivity and specificity of PCR with the added advantage of simultaneous detection of multiple targets in one reaction. The current standard for CVBD detection – blood smear examination with Giemsa staining – has been demonstrated to achieve only up to 74% sensitivity in detecting *E. canis* after examination of 1,000 oil immersion field slides of both canine buffy coats and lymph nodes [23]. Moreover, detection by blood smear examination becomes difficult in subclinical cases where parasitemia is low [15]. PCR detection in canine blood samples has higher sensitivity compared to blood smear examination which is conventionally used for routine detection of CVBDs [5]. Moreover, multiplex PCR has been proven useful in simultaneous detection of CVBDs since current results show that reliance only on serology and presence of symptoms may not be accurate for diagnosis [18]. Presence of anti- *Ehrlichia* IgG and low platelet count were the two most commonly observed symptoms in this group of dogs. There were 81 out of 114 dogs positive for serology but only 6 out of the 81 were actually infected with *E. canis* indicating more cases of past infections rather than current ones. Poor correlation or concordance between PCR prevalence and seroprevalence has been recorded before [22, 30, 35] since presence of antibody does not necessarily mean presence of the parasite in blood samples. Low platelet count is a symptom of canine monocytic ehrlichiosis [29] and canine babesiosis [15] and this symptom has been suggested as a screening test for canine monocytic ehrlichiosis to further improve reliability of diagnosis [4]. However, later studies show no correlation with *E. canis*, *A. platys*, and/or *Babesia* spp. infections [17, 21]. In this study, there were 54 out of the 114 dogs surveyed that had low platelet counts but only 13 of 54 were infected with any of the four causative agents of CVBDs indicating other causes of thrombocytopenia. Results of conventional PCR and sequencing confirm the results of multiplex PCR. All samples detected by the former methods were also detected using multiplex PCR except for one case of *H. canis* infection. This may be due to a lower limit of detection of Hep-F/Hep-R compared to Hep18S multF/Hep18S multR. Nevertheless, results still indicate the utility of the designed multiplex PCR primers in screening for CVBDs and as a possible aid in diagnosis. The high analytical sensitivity and specificity of the primers are a good compliment for other diagnostic methods such as observation of symptoms, serology, and microscopy since these have known issues in these areas. However, additional tests are necessary to determine the clinical sensitivity and specificity of the primers in larger sample populations due to the low prevalence of CVBDs in the current sample population.

In summary, this study gives crucial information on the underreported diversity and prevalence of CVBDs in the Philippines which have been lacking from 1977 to 2008. In addition, the multiplex PCR protocol developed in this study shows promise in clinical application for screening of CVBDs in canine blood. A proper screening method is necessary for both clinical use and prevalence studies in the Philippines. Future prevalence studies can address the current extent and effect of CVBD as well as determine which species are already present in local dog populations from other parts of the country. The multiplex PCR protocol offers a quick and simultaneous method for screening of CVBDs in local dog populations as well as pets travelling from foreign countries. It is recommended that future studies also add *B. gibsoni* and *A. platys* to the multiplex detection protocol since these are also present in local canine populations.

Acknowledgments

We thank Jaime Antonio O. Yu for the technical assistance. We are also grateful to Dr. Shimon Harrus of Israel, Dr. Gabor Foldvari of Hungary, and Dr. Domenico Otranto of Italy for providing DNA extracts of positive controls for *E. canis*, *B. canis*, and *H. canis*, respectively. This work was supported by a research grant from the Natural Sciences Research Institute, University of the Philippines Diliman (project code: BIO-14-2-04).

References

2. Baticados AM, Baticados WN, Carlos ET, Carlos SMEAS, Villarba LA, Subiaga SG, Mageyas JM. Parasitological detection and molecular evidence of *Hepatozoon canis* from...

